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Abstract

The experimental results of a previous study of the mass transfer kinetics of bovine serum albumin (BSA) in ion-exchange
chromatography, under nonlinear conditions, were reevaluated using the general rate model of chromatography. Solutions of
this model were obtained numerically. The influences of axial dispersion, the resistance to mass transfer from the bulk
mobile phase to the surface of the packing particles, and the intraparticle mass transfer resistances on the profiles of the
breakthrough curves of BSA were investigated. The results obtained are compared to those of a previous investigation of the
same data, using the simple transport—dispersive model and the lumped pore diffusion model. The results obtained show that
the use of an oversimplified model for the analysis of chromatographic data can lead to erroneous interpretations of the
experimental data and to misunderstandings of the fundamentals of the processes involved. Finally, a theoretical comparison
between the properties and the range of application of the three models is provided. [0 2001 Elsevier Science BV. All
rights reserved.
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1. Introduction

Numerous mathematical models are available to
account for the band profiles obtained in chromato-
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processes [1-3]. When the mass transfer resistances
are small and have a minor influence on the profiles,
the equilibrium—dispersive (ED) model is recom-
mended [3]. Otherwise, depending on the nature and
the complexity of the problem, the general rate (GR)
model, the lumped pore diffusion (POR) model, or
the transport—dispersive (TD) model are used (see
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e.g., Refs. [4-8]). The GR model is the most general
model of chromatography. In this model, axial
dispersion and all the mass transfer resistances are
taken into consideration, namely (1) the external
mass transfer of the solute molecules from the bulk
phase to the external surface of the adsorbent
particles; (2) the diffusive transport through the
pores of these particles; and (3) the adsorption—
desorption processes at the actual sites [1-3]. How-
ever, the GR model is used only reluctantly because
of the relatively large number of parameters needed
to characterize the axial dispersion, the external mass
transfer, and the effective diffusion through the
pores, including the external bed porosity and the
adsorbent particle porosity. These coefficients should
be known for a predictive use of the model and some
of them are difficult to measure accurately. The use
of the smpler POR model also requires knowledge
of the values of several of these parameters. There-
fore, the smple TD model is frequently used when
the mass transfer resistances have a moderate in-
fluence on the profiles of chromatographic bands. To
solve this model, we need to know only the value of
the dispersion coefficient, the overall mass transfer
coefficient, and the total bed porosity. These co-
efficients can be derived from a few simple measure-
ments.

The TD model was recently used for a study of
mass transfer in anion-exchange chromatography [6—
8]. It was shown that, in order correctly to describe
experimental breakthrough curves, it had to be
assumed that the overall mass transfer coefficient
depends on the concentration. This result was not
original; it had been previously reported in numerous
publications [9-15]. For example, Friedrich et a. [9]
reported that the rate of surface diffusion on carbon
adsorbents increases rapidly with increasing con-
centration. Lederer et al. [10] showed that axial
dispersion in size-exclusion chromatography in-
creases with increasing concentration. It was shown
that the diffusion coefficient [11], the axial disper-
sion [12], and the mass transfer rate coefficients [13]
of proteins in chromatography increase with increas-
ing concentration. So does aso the effective dif-
fusivity of different solutes in bulk solutions [14].
All these investigations were based on the use of the
TD model to account for the experimental data.
Finally, Seidel-Morgenstern et a. [15] showed that

the apparent axial dispersion of the two enantiomers
of Troger's base on microcrystalline cellulose triace-
tate decreases significantly with increasing concen-
tration. This last study was based on the use of the
equilibrium—dispersive model, lumping the mass
transfer kinetics with axial dispersion.

Nevertheless, this concentration dependence of the
mass transfer coefficient is somewhat unexpected. It
is important to determine whether it is an actual
physical effect or whether it arises from a model
error, the TD model being too simple to account for
the complex phenomena involved in the phase
equilibration when the mass transfer kinetics is too
slow compared to the rate of convective transfer of
the band. In all the cases in which a concentration
dependence of the mass transfer rate coefficient was
found, the experimental data were not fitted to the
more complex POR or GR models. A comparison
between band profiles calculated with the GR, the
POR and the ED models was presented earlier [16].
This work showed that, in high concentration chro-
matography (i.e,, under such conditions that the
economic efficiency of preparative separations is
high and close to its maximum), the GR model can
be replaced by the POR model when:

St

Pe> 100 B~ 5

where Pe is the Peclet number [Pe=uL/(D, €,)], St
the Stanton number (St=Kk,.a,Le./u), and Bi the
Biot number (Bi=Kk,d,/2D), with u, mobile
phase velocity, d, average particle diameter, L,
column length, k., external mass transfer coefficient,
and D effective diffusion coefficient. It was also
shown [16] that the ED model could be preferred to
the POR model when:

Pe> 100 > 2000

S
1+Bi/5

St

Pe> 500 TBI/S > 4000

If these conditions are not fulfilled, important or
even major differences are observed between the
numerical solutions of these different models, the
results closest to experimental data being those
obtained with the GR model. Although this earlier
work did not involve the TD model, its conclusions
suggest a plausible explanation for the concentration
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dependence of the rate coefficient, a model error
arising from the simplifying assumption made in the
ED and TD models that the concentration of the feed
components is always homogeneous across the par-
ticles.

The goals of this work are to reevaluate previous
experimental data on the mass transfer kinetics of
bovine serum abumin (BSA) in anion-exchange
chromatography [6,17], using the GR and the POR
models, and to determine the conditions under which
the TD model can be used instead of the more
complex POR or GR ones and till give similar
numerical solutions.

2. Theoretical

We present here briefly the characteristic features
of the four models used in this study to account for
the same set of experimental data, the GR, the POR,
the TD, and the ED models. Although these models
are multicomponent models, we limit here their
presentation and the discussion of their properties to
the single-component case because the experimental
data discussed relate only to breakthrough curves of
pure BSA.

2.1. The general rate model

We make the following assumptions

(1) The chromatographic process is isothermal.

(2) The mobile phase velocity is constant. The
compressibility of the mobile phase is negligible.

(3) The bed is packed with porous particles that
are spherical and uniform in size.

(4) The concentration gradient in the radia direc-
tion of the bed is negligible.

(5) Loca equilibrium exists for each component
between the pore surface (monolayer) and the stag-
nant fluid phase inside the macropores.

(6) The dispersion coefficients are constant.

Based on these assumptions, we write two mass
balance equations for each component, one in the
mobile phase percolating through the bed of par-
ticles, the other inside the particles. The latter
involves the stagnant mobile phase and the adsorbed
monolayer. Like al models, the GR model is com-

pleted by suitable initial and boundary conditions
and by the isotherm equation [5,16,18,19].

2.1.1. Mass balance of the ith component in the
mobile fluid phase

aC, aC, 9°C,
ee-W +u "oz D, ? —(1- ee)kexp,iap
G —Coir =R)] @

2.1.2. Mass balance of the ith component in the
solid phase

aC_ . aq; 1 a< aC >
p.i i = 9 27

& ot T(17€) 5 = Daniz 5\
(2)

2.1.3. Initial conditions
Since we have two partial differential equations,
we have one initial condition for each:

C(02=C/ ®3)

Cp,i(o!rlz) = Cg,i(raz); qi (O,r,Z) = qio(riz);
for0<z<Land0<r <R, (4

2.1.4. Boundary conditions for Eq. (1)

We have two boundary conditions, one at the
column inlet, the other at the column exit. The
condition for t>0 and z=0 is:

' aCl
uCq; —u(0)C(0)= —€D, - 9z
C,=C, foro<t<t, ®)
C;=0 fort, <t
The condition for t>0 and z=L is:
9z - ( )

2.1.5. Boundary conditions for Eq. (2)
There are again two boundary conditions, for t>0
and r=R:
aC,;(t,r)
eff ’ or = kext,i ' |:CI - Cp,i(tir)] (7)
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and for t>0 and r =0:

aC,;(tr)
—ar O ®

Combined with the phase equilibrium isotherm,
Egs. (1)—(8) constitute the mathematical translation
of the GR model.

2.2. Lumped pore diffusion model

The POR model is obtained as a simplification of
the GR model, as previoudly explained [20,21]. In
this model the mass balances of the ith component in
the mobile and the solid phase are written as follows:

aC; aC, 9°C
GG'W_FU.E: eeDL.—aZZ _(1_6e)kiap
(€ -C,)) (9)
aE:p,i aai —
€ ot +(l—6p)~ﬁzkiap.(ci _Cp,i) (10)

where Ep and g, denote average concentrations. The
overall mass transfer coefficient k; of component i is
given by the following relationship:

11
kiz[k + ] (12)

ext,i int,i

where k. ; and k; .. ; are the external and the internal
mass transfer coefficients, respectively. The internal
mass transfer coefficients are calculated from the

equations:
10D eD

P m,i

kint,i_ d effi — y
p

(12)

where D, ; is the molecular diffusivity of component
i and vy is the tortuosity factor. The initial and the
boundary conditions are similar to those used in the
GR model.

2.3. The equilibrium—dispersive and the transport—
dispersive models

The ED model is easily derived from the POR
model, if the term ka,-(C, —C,;) is eliminated from
Egs. (9) and (10). Assuming that the mass transfer
resistances are negligible, which is equivalent to the

condition C;=C,;, one can obtain the following
form of the mass balance equation for the ED model:
aC aq aC, 9°C

- ). i R .
& ot +(1—€) 8t+u 9z eD, o7

(13)

This form is similar to the one found in the
classical literature [3]. The only difference is in the
replacement of the total porosity in the right-hand-
side of Eq. (13) by the external porosity.

The initial and boundary conditions are adapted
from those used in the GR model. As in al the
models, g; is calculated from the appropriate iso-
therm equation.

In cases in which the mass transfer resistances,
without being large, cannot be entirely neglected, the
TD model is frequently used [6—15]. This model
consists in Eq. (13) completed by the following
kinetic equation:

ag; "
ot kii- (a7 — ) (14)

where g* is the concentration in the adsorption
monolayer at the adsorbent surface in equilibrium
with the concentration C, in the mobile phase.

2.4. Basis of a comparison between the GR, POR,
and TD models

As will be demonstrated by a comparison between
experimental breakthrough curves and those calcu-
lated using the different models discussed above, the
TD model does not account correctly for the ex-
perimental data (see Section 3.1). In fact, the TD
model should not be used to model the chromatog-
raphy process studied [17]. As explained in the
Introduction, conditions for the selection of the most
suitable model, depending on the rate of the mass
transfer kinetics, were previously established for the
GR, the POR and the ED models [16]. These
conditions were derived for high concentration chro-
matography, in the case of a Langmuir isotherm. We
now discuss their extension to the TD model which
was left out from this earlier analysis. To perform
such a comparison between models that are so
different, it is convenient to rewrite all of them under
dimensionless form.
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2.4.1. Dimensionless form of the GR, the POR, the
TD, and the ED models

The dimensionless variables used here are the
following:

_z _w R
=L T le, "R,
G Cp.i q
V=& V=T Q=7 (15)
_ udp kext,iapLEe B _ kextRp
a DLEE I u ! Deff

where C, is a reference concentration which we will
take here as equal to the feed concentration of the
injected sample, C,.

Now, the two mass balance equations of the GR
model (Egs. (1) and (2)) can be rewritten as follows:

ay,  ay, %y, (1-
l_ﬁ_l:i_y'_ﬂ&
ar  ax Pe g € '
'[Yi _yp,i(R: 1)] (16)
A Q_% 1 g
“ or T &) 5 =3B R IR
ay, i>
2 P,
‘<R "R (17)
The initial conditions (at 7=0) are:
y.(0x) =y° foro<x<1
yp,i(oiR!X) = y?)l (R,X)}
Q(0RX)=Q’(RX)} for0<x<1;0<R<1

(18)

The boundary conditions of the first mass balance
equation are:

1 ay(r0
—yi(r0) = “Pe’ ya(x ),

Forr>0;x=0 y;,

withy(; =y, forre [0,7,]

andwith y;, = 0for 7> 7,

ay (7,1

Forr>0;x=1 M=0 (19)
0X

The boundary conditions of the second mass

balance eguation are:

Wpi(tR)
For7>0,R=1 ”R =Bi; [y, — ¥,,(wR)]
3y, (tR)
Forr>0,R= oip'aR =0 (20)

With the same dimensionless variables the POR
model can be rewritten as follows:

dy, 1 % 1-e .
E X Pe ’ aXZ - Ee St (y| yp,i)
(21)
y ; 0Q, _
& 5r (L&) =S (¥ V) (22)
S ka Le,
SHES (23)

i 1+B|/5 u

This model has initial and boundary conditions
that are similar to those of the GR model.
The dimensionless mass balance equation of the
ED model is given by:
Y; 0Q; Y, 1 GZYi
eT'E-F(l—eT)'?-F € ox — € Pe’ e
(24)

Finally, the dimensionless form of the TD model
consists in the previous mass balance equation and in
the following kinetic equation:

Qi _ * . "o KiL€
?‘Sti (Qf —Q) withSt” = u

(25)
The initial and boundary conditions of these last
two models are similar to those of the GR model.

2.4.2. Numerical calculations of solutions of the
POR, TD, and ED models

The first criterion previously established [16] and
cited in the Introduction regards the equivalence of
the solutions of the GR and the POR model. It states
that if Pe>100 and St/Bi>5, there are no significant
differences between the solutions of these two
models. This condition is valid for any isotherm,
including a linear one. It will be verified in the
calculations of al the solutions discussed later.

In the calculations made to compare the elution
profiles obtained with the different models com-
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pared, we assumed that the retention behavior of the
compound considered follows Langmuir isotherm
behavior, with a,=8, b, =4 for its two numerical
coefficients. The total column porosity, the external
porosity of the packing, and the particle or internal
porosity were assumed to be equal 0.75, 0.375, and
0.60, respectively (the internal porosity being the
total pore volume reported to the volume of the
particles, not that of the column as it is some times
done). The relevant values of the dimensionless
Peclet (Pe) and Stanton numbers (St' or St") are
given in the figure captions.

In al the following discussions, we will consider
that the band profiles calculated as solutions of two
different models are practically identical when the
relative difference of their second central moments
(Ap, /) s less than 2% and the relative difference
of their numbers of theoretical plates (AN/N) is less
than 4% (the number of theoretical plates being
derived using the moment method [3]).

3. Experimental

In this work, we reevaluate, on the basis of the GR
and the POR models, experimental data on the mass
transfer kinetics of BSA in anion-exchange chroma-
tography previoudy discussed [6,17]. These data
were initialy interpreted using the TD model after it
was shown that the ED model was not applicable.
We supply here only the brief review of the ex-
perimental conditions which is necessary to under-
stand the results derived in this paper. Further details
on the experimental work can be found in the
origina papers [6,17].

3.1. Experimental conditions

The experiments were performed using a 7.5X
0.75 cm stainless steel column (No. S0116) packed
with TSK-GEL-DEAE-5PW (average particle size,
10 wm; average pore size, 1000 A) from Tosohaas
(Montgomeryville, PA, USA). The column had a
hold-up volume of 2.58 ml, contained a volume of
packing material of 0.73 ml, and had an efficiency of
2800 theoretical plates for cytidine-5'-monophos-
phate (unretained) at a flow-rate of 1 ml min~* of an

eluent containing 35 mM NaCl in a 20 mM Tris—
HCl buffer (pH 8.0). The tota porosity of the
column was e; =0.779. The external porosity of this
column was not measured but estimated at e,=
0.375. From the values of €; and €., the porosity of
the particles is estimated at €,=0.646. It should be
noted that any error made in the estimate of the
external porosity has a dight influence on the
estimate of the diffusion coefficient but nearly none
on the final results of this work. The mobile phase
was a buffer solution prepared by dissolving either
25 mM Bis-Tris or 50 mM Tris in water and titrating
with HCI until pH 6.0. The sample solutions were
prepared by dissolving known amounts of BSA in
these buffer solutions.

3.2. Procedures for the determination of the
isotherm and rate coefficients

Equilibrium data were obtained by frontal analysis
[3,22]. After a breakthrough had been acquired, a
new, more concentrated, buffer solution of BSA was
pumped into the column until the concentration front
broke through. This solution was obtained by mixing
the pure mobile phase and a solution of BSA in the
mobile phase, using the step function of the solvent
delivery system. A series of such single break-
through curves were measured, in the order of
increasing steps of BSA concentration. After com-
pletion of each series of experiment, the column was
regenerated, following a standard procedure, then
reequilibrated with the mobile phase [17]. The flow-
rate was 1 ml min~*. The amount of BSA adsorbed
by the stationary phase at equilibrium was derived
from the retention volume of the half-height of the
breakthrough curve, through the classical equation
[22]:

(Ve —V,
q* = W (26)
where g* is the amount adsorbed on the solid phase
when it reaches equilibrium with the concentration
C, in the fluid phase, V; is the retention volume of
the half-height of the breakthrough curve, V, is the
column hold-up volume, and V; is the volume of
adsorbent in the column. The isotherm data were
fitted to a modified bi-Langmuir isotherm equation
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that gave a better fit than either a simple Langmuir or
a bi-Langmuir isotherm model:

a,C

1+b,C

= +a,C (27)

Using the best equilibrium isotherm and the TD
model to calculate breakthrough profiles, the best
values of k, were estimated for each concentration
step, by minimizing the difference between the
experimental and the calculated profiles. Minor
adjustments had to be made in same cases for minor
changes in the retention times of certain experimen-
tal breakthrough curves [17].

3.3. Procedures for the estimation of the other
numerical parameters

In the case of the GR model used in this work, the
value of the external mass transfer rate coefficient
were calculated from the Wilson—Geankoplis corre-
lation [23]:

_ kealy 109
B Dm a ee

where Sh, Sc, and Re are the Sherwood, the Schmidit,
and the Reynolds numbers, respectively. This gives
Koy =042 cm s~ .

The molecular diffusivity, D,,, was derived from
the following correlation cited in Ref. [3]:

_8 T

Dh,g=831-10 " - — 3 (29)

’ 77 M

sv' "' B

SCl/SRe1/3 (28)

where the subscripts B and sv stand for BSA and the
solvent, respectively. A diffusivity of 3.6:10 > cm®
min~* was obtained.

The axial dispersion coefficient was calculated
from the relationship Pe=2N and found equal to
0.00807 cm” min~*, since the contributions of axial
and eddy diffusions are the same for the unretained
compound and for BSA.

Finally, the tortuosity factor, v, was derived from
the relationship [3]:

_(2-&)

€

Y (30)

The values of the diffusion coefficient, the exter-
nal mass transfer coefficient, and the axial dispersion

coefficients so obtained were used for all calculations
made with either the GR or the POR models. The
calculations of breakthrough curves were performed
using the same values of the external mass transfer
coefficient, k,,, and the dispersion coefficient, D,
(equal to 042 cm s ' and 0.00807 cm® min ',
respectively) in all models.

3.4. Programming and CPU times

The programs used to perform al the numerical
caculations discussed in this work were written
using the method of orthogonal collocation on finite
elements [3-5]. The calculations of numerical solu-
tions of sophisticated models such as the GR and the
POR models required one to two orders of mag-
nitude longer CPU run times than those of simple
models like the TD or the ED models when these
models are solved using programs based on the
Rouchon algorithm [3,24]. However, a Rouchon-like
algorithm was developed for the POR model [25].
However, finite difference based programs were not
used in the present case. The need for these less
accurate algorithms in the calculation of band pro-
files has become less critical in recent years. In this
work, for example, the typical computing times on a
recent Pentium Ill-based desk computer for the
numerical calculations regarding the reevaluation of
the BSA breakthrough curves required usually 2 to 3
min with the POR model and between 3 and 30 min
with the GR model.

4. Results and discussion

4.1. Band profiles of BSA obtained with the TD
model

The best values of the numerical parameters a,,
a,, b, in Eqg. (27) and a selection of best values of
the external mass transfer coefficient, k,, for three
different concentration steps are listed in Table 1.
Fig. 1 shows two experimental breakthrough curves
obtained at pH 7.5, those corresponding to the lowest
and the largest concentration steps. This figure also
illustrates the fitting method used to estimate k; with
the TD model. The experimental data for the step
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Table 1
Parameters of the equilibrium isotherm and the overal mass
transfer coefficient

pH 7.5 pH 6.0

a, () 3040 1380

b, (ml mg™) 321 17.3

a, () 3.38 11.9

k, (min™") 0.08 at C=0.167 0.11 at C=0.156
050 a C=141 0.38 a C=0.90
122 at C=277 101 a C=2.78

concentration C=2.77 mg ml ~* (Fig. 1b) were well
accounted for with a rate coefficient k, =1.22 min™*.
Neither this rate coefficient nor the value k,=0.5
min~*, which was the best estimate of k, for C=
1.41 mg ml~*, could be used properly to fit the
experimental data for the concentration step C=
0.167 mg ml~* (Fig. 18). Similar results (not shown)
were obtained at pH 6.0.

These results demonstrate a dependence of the
overal mass transfer rate coefficient on the BSA
concentration [17]. They could arise either from an
actual concentration dependence of the external mass
transfer and/or the internal mass transfer resistances
or from a model error resulting from the necessary
compromises made in forcing too simple a model
onto the experimental data. Thus, the goal of this
work is to investigate whether this dependence is real
or apparent.

T T T
320 340 360 380 400
t [min]

4.2. Band profiles of BSA obtained with the GR
model

The numerical calculation of breakthrough curves
using the GR model with the effective molecular
diffusion coefficient derived from the correlation
suggested by Tsou and Graham [26], Eq. (29), gives
too steep adsorption fronts. In the following, we used
for the molecular diffusivity inside the pores of the
adsorbent an estimate derived by fitting to the GR
model the experimental data [6] for the largest
concentration step (C=2.766 mg ml '), at pH 7.5.
The value obtained was D,,=1.22-10"° cm® min™*.
This value was used in all the calculations discussed
in the following. The value of the effective diffusion
coefficient derived from Eq. (12) is 3.6:10 ° cm®
min~ . Accordingly, the estimate of the diffusion
coefficient of BSA in the pores of the resin is about
30 times smaller than its bulk value obtained from
Eqg. (29). A similar conclusion was reported previ-
oudy by several groups. Graham and Fook [27]
studied the equilibrium and the kinetics of adsorption
of BSA on a DEAE-resin by a batch method. They
reported that the diffusion coefficient in the resin was
about 100 times smaller than that in the bulk phase.
Similarly Tsou and Graham [26] reported a calcu-
lated effective particle diffusivity of BSA in DEAE-
Sephadex A-50 about 20 times smaller than the bulk
diffusivity. Skidmore et a. [28] determined the

t [min]

Fig. 1. Comparison between the experimental breakthrough curves (symbols) and numerical solutions (solid lines) of the TD model for
different values of the mass transfer rate coefficient (see Table 1). These numerical values give the best fit of the experimental data [6] to the
model for concentration steps equal to 0.167 (a, left), 1.411 (not shown), and 2.766 (b, right) mg ml~*, respectively.
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characteristics of the equilibrium and the kinetics of
the adsorption of BSA and lysozyme on the strong
cation exchanger S Sepharose FF and reported a
value of the effective particle diffusivity of 5.1-10°
cm’ min~*. Fernandez and Carta [29] and Fernandez
et al. [30] reported values of 5.5-10" ' cm® min~* for
the intraparticle diffusion coefficient of BSA. These
values were obtained assuming that the driving force
for diffusion through the particles of a composite
silica—polyacrylamide gel anion exchanger is the
total BSA concentration. Yoshida et al. [31] investi-
gated the mass transfer of BSA on a strongly basic
adsorbent, chitosan, using the shallow bed adsorption
method. They reported values of 6-10° and 2.7-

(a)

T T T
320 340 360 380 400
t [min]

107" cm® min~* for the intraparticle diffusion

coefficient of BSA, assuming that the total BSA
concentration is the driving force of diffusion.

Fig. 2a—c show typical comparisons between the
experimental breakthrough curves at pH 7.5 and the
profiles calculated as numerical solutions of the GR
model.

It is important to observe that, although al the
numerical calculations were performed with the same
set of numerical coefficients for the isotherm and all
the kinetic coefficients, all the numerical solutions
closely approximate the experimental curves.

No dependence of any of the diffusion or rate
coefficients on the concentration needs to be intro-

1.4 (b) —

0.6

o4

0.2

0.0 . v T T
20 40 60 80

t [min]

204

¢ [mg/mi]

20 25

t [min]

Fig. 2. Comparison between an experimental breakthrough curve (symbols) and the numerical solution (solid lines) of the GR model.
Experimental conditions: (8) pH 7.5, concentration step, C=0.167 mg ml~*. (b) pH 7.5, concentration step, C=1.411 mg ml~*. (c) pH 7.5,
concentration step, C=2.766 mg ml —*. All calculations were made with Pe=2, N=5600, Bi =749, St=23106.
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duced to observe this agreement in the whole range
of concentration investigated. Similar conclusions
can be derived from the comparison of the ex-
perimental data and the profiles calculated at pH 6.0,
as illustrated in Fig. 3.

4.3. Band profiles of BSA obtained with the POR
model

The results obtained with the POR model are
illustrated in Fig. 4 (pH 7.5). As in the case of the
GR model, the calculations of the three breakthrough
profiles in Fig. 4 were carried out using the same set
of numerical coefficients. No dependence of the
coefficients of the mass transfer resistances on the
concentration is needed.

The agreement between the experimental and the
calculated breakthrough curves is better for the
solutions of the GR model than for those of the POR
model. Thisis not surprising because, in this case the
ratio St/Bi is equal to 4.1 and, as indicated earlier,
the POR model should not be used in this case [16].

4.4. General comments on the calculations of the
band profiles of BSA

Breakthrough curves that practically cannot be
distinguished from each other were obtained whether

2.7 -~

t [min]

Fig. 3. Comparison between experimental breakthrough curves
(symbols) and numerica solutions (solid lines) of the GR model.
Experimental conditions: pH 6.0, concentration steps, C=2.783,
0.899, and 0.156 mg ml .

3.0

B —
B L]
24 1.24 Ll
n
o] ;

1.84 0.5

o
»n
1

¢ [mg/mi]

=
N
1

0.4
0.9
0.24
0.6

0.0 . T T T
0.3+ 2 0 “© 50 [ 70 0 P
00 e T T T T T "I”"‘“
0 50 100 150 200 250 300 350 400
t [min]

Fig. 4. Comparison between experimental breakthrough curves
(symbols) and numerical solutions (solid lines) of the POR model.
Experimental conditions: pH 7.5, concentration steps, C=2.766,
1.411, and 0.167 mg ml ~*. The inset is for C=1.411 [mg ml] .

the external mass transfer resistances and the axial
dispersion in the mobile phase stream were ignored
or not (not shown). So, in the present case (BSA on
TSK-GEL-DEAE-5PW anion exchanger), only the
mass transfer resistance inside and across the ad-
sorbent particles must be taken into account. This
explains why the TD model fails properly to account
for the experimental results. This model cannot
properly take internal mass transfer into account.

4.5. Comparison between profiles calculated with
the POR, TD, and ED models

Before discussing the results of these calculations,
we must notice that a comparison of the definitions
of the numbers St” and St’ suggests that the relation-
ship ka,=k; should hold. It cannot be exact, how-
ever, because, at the difference with the ED model,
the TD model cannot be derived from the POR
model and, in general, a solution of the TD model
and one of the POR model with St"=St" and the
same Peclet number will be different. However, at
the first attempt we will check if, for a given Peclet
number, there exists a couple of Stanton numbers
St"=St" for which the solution of the TD model and
that of the POR model cannot be distinguished.

Figs. 5-8 compare the solutions calculated with
the POR, the TD, and the ED models for Pe=10 000
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0.4 4

0.3+

vy

0.14

0.0 v T T T T v T
3 4 5 6 7 8 9

t]
Fig. 5. Comparison between the solutions of the POR, the TD and

the ED models for Pe=10000, St'=St"=500, C;=1, and 7,=
0.5. All three lines coincide for all practical purposes.

and St' = St"=500, for different values of the sample
size, defined as the product of the sample con-
centration, C,, the flow-rate, and the duration of the
rectangular injection, t,.

At high concentrations (C,=1 and impulse time
7,=0.5, Fig. 5), the column is strongly overloaded
(note that the product b,C;, that characterizes the
deviation of the isotherm, Eq. (27), is equal to 4) and
al three models give practicaly the same elution
curves. For C,=0.1 (b,C;=0.4, Fig. 6), the solutions

0.6

0.5

0.4+

v

0.3+

0.2+

4
00 j
-0 T T T

5 6 7 8 ) 9
tf]
Fig. 6. Same as Fig. 5, except C,=0.1. The highest line is the

solution of the ED model, the medium line, that of the TD model,
and the lowest ling, that of the POR model.

0.8+

0.6

vyl

0.4+

0.2 4

0.0 . { ) =

t[]

Fig. 7. Same as Fig. 5 except C,=0.01 (b,C,=0.04; in the range
between 0 and 0.01, the isotherm is barely different from itsinitial
tangent).

obtained with the TD and the ED models differ too
much from that of the POR model, being much
steeper, to be acceptable as actua solutions of the
problem. At this concentration, however, al the band
profiles coincide for St’=St">ca. 4000. Decreasing
the concentration to C,=0.01 (Fig. 7) and C,=0.001
(Fig. 8) leads to a practically linear problem. It is
known that at low concentrations, the deviation of
the isotherm from linear behavior is proportional to
the product b, C, in Eq. (27) and that the deviation of
band profiles from those obtained in the linear case is

0.40

0.35+
0.30 A
0.25+

0.20

v

0.154
0.10 4

0.05+

0.00 . r

tf]

Fig. 8. Same as Fig. 5 except C;=0.001, and 7,=0.1 (b,C,=
0.004 corresponds to a linear isotherm).
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small for b,C,<0.05 and negligible for b,C,;<0.01
[3]. However, the differences between the band
profiles calculated with the three models increase
with decreasing concentrations. The profiles obtained
for Pe=10 000 and these two concentrations become
nearly identical for values of St'=St" equa to ca
10000 and 80000, respectively. Those are high
values, corresponding to fast mass transfers and high
column efficiency.

Similar results were obtained for smaller values of
the Peclet number. The differences between the
numerical solutions of the three models decrease
with decreasing Peclet number (Fig. 9) but they still
remain clearly visible for values of the Peclet
number as small as 100 (Fig. 10).

4.6. General comments on the results of
comparisons between calculated band profiles

It might be surprising that we conclude to the
superiority of the results obtained with the GR model
when it has been abundantly demonstrated that the
ED model gives satisfactory or excellent results
under either nonlinear or linear conditions [3]. The
origin of the differences observed in Figs. 7-10
between the profiles calculated at low concentrations,
under linear or quasi-linear conditions, is in the

tf]

Fig. 9. Comparison between the solutions of the POR, the TD,
and the ED models for Pe=1000, St'=St"=1000. In each case,
the highest line is for the ED model, the central one for the TD
model, and the lowest for the POR model. (g) C;=1, 7,=0.5, (b)
C,=0.1, 7,=05, (¢) C,=0.01, 7,=0.5, (d) C,=0.001, 7,=0.1.

0.25+

0.20 1

0.15

vyl

0.10

0.05

0.00

tf]

Fig. 10. Comparison between the solutions of the POR, the TD,
and the ED models for Pe=100, St'=St"=500. (8 C,=1, 7,=
05, (b) C,;=0.1, 7,=05, (9 C;=0.01, 7,=0.5, (d) C,=0.001,
7,=0.1

assumptions made regarding the way the mass
transfer resistances are accounted for. In this work,
we stuck to the original definition of the ED model.
Only the axia and eddy diffusions are accounted for.
Mass transfer between phases is assumed to be
infinitely fast.

Furthermore, the numerical calculations were car-
ried out using a program based on collocation on
finite elements, not on finite differences such as the
Rouchon—Golshan method [3]. With collocation on
finite elements, there is no numerica diffusion and it
is pointless to try and relate the space increment to
the column height equivalent to a theoretical plate
(HETP). This explains entirely the differences be-
tween the profiles derived from the GR and the ED
models in Figs. 7-10. If a conventional finite
difference program were used with integration incre-
ments derived as is now conventional [3], the band
profiles obtained with the GR and the ED models
would be the same at infinite dilution. There would
still be differences at high concentrations because
numerical errors due to the approximations made by
the algorithm are larger with finite differences [3].

In each of the cases illustrated above, we observed
that nearly identical solutions are afforded by the TD
and the ED models for smaller values of St"=St’
than are required to achieve the same result for
solutions of the TD and the POR models. From this
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observation, it follows that when the solutions of the
TD and the POR models are close enough to be
considered as identical in a concentration interval O
to C, the solutions of the ED model are also identical
to those of the POR model. The conditions required
for the equivalence of the solutions of the TD and
POR model are the same as those for the equivalence
of the ED and POR models previoudly derived [16].
Therefore, the use of the TD model is rarely justified.

Using the criterion adopted earlier for the equival-
ence of the solution of two models (relative differ-
ence of their second central moments less than 2%
and that of their numbers of theoretical plates less
than 4%), we found from numerous calculations
carried out under a variety of numerical conditions
that the solutions of the ED, the TD and the POR
models are practically identical when the following
conditions are fulfilled:

(1) For Pe>10 000: St’=St">80 000.

(2) For Pe>1000: St’=St">10 000.

(3) For Pe>500: St’ = St">4000.

(4) For Pe>100: St’ = St">2000.

Note that the minimum Stanton number required
for peak profile equivalence decreases rapidly with
decreasing Peclet number because, in the same time,
the corresponding profiles become broader. The
peaks showed in Fig. 11 fulfill the conditions above.
The relative differences between the second centered
moments and the efficiencies of the peaks obtained

04

0.34

vyl

0.1+

0.0 r . - . .
6.5 7.0 7.5 8.0 8.5

tf]
Fig. 11. Comparison between the solutions of the POR, the TD

and the ED models for Pe=10 000, St’' = St"=80 000, C,=0.001,
and 7,=0.1.

with the TD and the POR models and shown in the
figure are 2.1% and 4%, respectively.

The result that we just obtained is trivial. The TD
model becomes equivalent to the POR model (and to
the ED model) when the mass transfer resistances
can be neglected at the Peclet number considered.
However, the band profiles calculated with the TD
model can be equivalent to those obtained with the
POR model for a properly chosen value of St”. For
example, for Pe=10 000 and St’ =500, these profiles
are equivaent for St”=130 at C,=0.1, for St"=115
at C,=0.01, and for St"=110 at C,=0.001. In other
words, we must use a markedly lower value of the
Stanton number, hence of the rate coefficient, than
used with the POR model and the overall mass
transfer coefficient, k,, must be increased with
increasing concentration if the profiles calculated
with the TD model are to be equivalent to those
calculated with the POR model. Moreover, the value
of St” giving TD profiles eguivalent to POR profiles
obtained with a given value of St’ depends not only
on the concentration but aso on the isotherm param-
eters. For example, for Pe=10 000, St'=500, C,=
0.1, 7,=05, a,=4, b,=2, & should be equa to
185 while for a, =8, b, =4, it should be 130, as was
stated above. Under these conditions, the TD model
becomes an empirical method of fitting band profiles
but the numerical parameters obtained have little
physica meaning.

4.7. Analysis of the conditions of equivalence of
the TD and POR models

The results discussed in the previous section
demonstrate that equivalence between the solutions
of the TD and the POR models calculated for a given
set of experimental conditions in a range of sample
Sizes cannot be achieved unless the Stanton number
of the TD model is considered to be a function of the
concentration and of the isotherm coefficients. A
relationship between the Stanton numbers of the
POR and TD models, St' and St”, respectively, can
be derived by considering the Van Deemter equation
[32]:

H_ZD,_ET ) ke \2 u 31
=—u T2\17k) Kk (31)

itself a simplification of the analytical solution of the
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TD model derived by Lapidus and Amundson [33] in
the case of a relatively high column efficiency: a
similar equation was derived by Kucera [34] for the
GR model:

2D, €, k, \2
H="4 +2'<1+k1

ud? ud, k, \> u
. J’- + .
60F '€, Dy; 6F '€k, 1+ I(p F'k.e,

(32)

and we have the following relationships between the
parameters involved:

k,=Fa k,=F"-[e,+(1—¢)a]
k=1_6p-a le—e.r |:/=1_Ee (33)

P € € €

where a is the slope of the linear isotherm. We will
assume that the kinetics of adsorption/desorption is
infinitely fast (k,~%) and neglect the third term in
the square bracket of the right-hand-side of Eq. (32).
We will also assume that, in the case of a nonlinear
isotherm, the rate coefficient k, is given by the
following relationship:

' AQ
kle . 6p+(1—6p)'E (34)
where AQ/AC is the slope of the isotherm chord at
the local concentration. For consistency, the retention
factor was taken as:
: AQ

ko =F “AC (35)

Finally, note that Eq. (31) was derived as a
solution of the following mass balance equation:

9G; aC,

i aZCi
P '

5T3_tl+(1_€T)' EZGT L2

(36)

while in this work we prefer to write the mass
balance as in Eq. (13). Then, the Van Deemter
equation should rather be rewritten:

2D, &, ke \2 u
H=—0""2{1T+k) =Kk (37)

Now, identifying the two plate height equations,

we can derive the following relationship between
their parameters:

" ko )?
Fhgel T7k]

ke = k, 2 (38)
Ge(1%)
or
ko \2
F 6e'<1+k(’,>
St/r: Y7 St'

! I(1 2’
koer \ T3k,

F'e, ki(1+k,)?
= . . St/ 39
e K(1+k))? (39)

Eqg. (38) shows that the apparent rate coefficient of
the TD mode increases with increasing concen-
tration, since AQ/AC, hence k, and k;, decrease with
increasing concentration in the general case in which
the equilibrium isotherm is convex upward (e.g.,
Langmuir isotherm). This prevision agrees well with
all the results discussed earlier in this work.

The agreement between the solutions of the POR
and the TD models calculated with the value of St”
derived from Egs. (34), (35), and (39), for ex-
perimental conditions that are typica of current
chromatographic applications, is excellent, as illus-
trated in Fig. 12. The same agreement was obtained
for other isotherms, such like Toth, the Langmuir—
Freundlich and even for an S-shaped isotherm (not
shown). However, for small Stanton numbers (see
Fig. 13), or for combinations of small Peclet and
Stanton numbers (see Fig. 14), a small discrepancy
between the solutions of the POR and the TD models
begins to become noticeable.

5. Conclusion

A reevaluation of previous experimental data on
the mass transfer kinetics of BSA in anion-exchange
chromatography under nonlinear conditions was
made using the general rate model and the pore
diffuson model of chromatography. The results
obtained show that the contributions to band
broadening of the external mass transfer resistances
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Fig. 12. Comparison between the solutions of the POR and the
TD models for Pe=2000, St'= 1000, C,;=1, and 7,=0.5. The St”
vaue was calculated from Egs. (34), (35) and (39), relating it to
the local concentration. The two lines practically coincide every-
where.

and of axia dispersion could be ignored in an
accurate description of the behavior of BSA. The
band broadening observed is controlled by the mass
transfer resistances taking place inside the pores of
the adsorbent particles. The rate coefficients of these
contributions do not depend on the concentration in
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0.00 T T T
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tf
Fig. 13. Same as Fig. 12 but Pe=4000, St' =100. The upper line

is the solution of the POR model, the lower line that of the TD
model.
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Fig. 14. Same asin Fig. 12 but Pe=100, St’ = 100. The upper line
is the solution of the POR model, the lower line that of the TD
model.

the whole range studied when their values are
estimated with the GR model.

By contrast, the use of too simple a model, such as
the transport—dispersive model, to analyze chromato-
graphic data can lead to erroneous conclusions
caused by the model errors that arise during the
process of fitting the experimental data to the profiles
generated by the model. The transport—dispersive
model can be used for modeling column chromato-
graphy processes only if the overall mass transfer
coefficient or the Stanton number are calculated
using Egs. (38) or (39), respectively. Although
excellent description of band profiles can be obtained
with the TD model, the rate coefficient derived from
a fitting of the data to this model do not have the
simple physical meaning that is usually attributed to
it.

Applying the POR model requires knowledge of
the external mass transfer resistances, the external
and the internal diffusion coefficients, and of the
tortuosity factor while calculations with the TD
model require only that the overall mass transfer
coefficient be known. However, when the determi-
nation of exact values of k., D,,, v is not needed,
the dimensionless version of the POR model can be
used more easily. Then, only one parameter, St', has
to be estimated. Similarly, the application of the
dimensionless version of the GR model requires only
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two parameters instead of one for the TD model, the
Stanton and the Biot humbers.

6. Nomenclature

a
a,, a,

o

~

3

eff

XAXXTIOOO

[¢]
X
-

N N XN XN
ST

& A

OL
:Olﬁl

QY P DT

Slope of a linear isotherm

First parameters of Langmuir isotherms
External surface area of the adsorbent
particles

Second parameter of a Langmuir iso-
therm

(KextRp) /Dt = Biot number
Concentration in the mobile phase
Concentration or average concentration
in the stagnant fluid phase contained in
the pores

Equivalent particle diameter

Dispersion coefficient

Molecular diffusion coefficient
Effective diffusion coefficient

Height equivalent to theoretical plates
Overall mass transfer coefficient
Adsorption rate constant

Overal mass transfer coefficient in TD
model

External mass transfer coefficient
Internal mass transfer coefficient
Retention factor

Analog to the retention factor, see Eq.
(34)

Column length

(uL)/ (D, €,) =Peclet number
Concentration in the solid phase
Dimensionless or average dimensionless
concentration in the solid phase

Radia coordinate

Dimensionless radial coordinate
Equivalent particle radius
(pu,d,)/m=Reynolds number
nl(pD,,)=Schmidt number

(Kextdp) /Dy, = Sherwood number
(keq@pLe)/u; St/ =[St/(1+Bi/5)]=
(ka,Le)/u; St =(k Le,)/u=Stanton
numbers

Time

Time during the constant concentration
is fed into column

u Superficial velocity

X Dimensionless axial coordinate

y Dimensionless concentration in moving
fluid phase

Y, Yo Dimensionless concentration or average

dimensionless concentration in the stag-
nant fluid phase in the pores

Z Axial coordinate

Greeks

0 Tortuosity parameter

€ €, € External, internal and total porosities

7 Viscosity of fluid phase

p Fluid molar density

T Dimensionless time

T, Dimensionless time during the constant
concentration is fed into column

Qubscripts

i Component index

r Reference conditions

s Solid phase

f Inlet value

Quperscripts

0 Initial value

* Equilibrium value
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